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Abstract

In the present study, the dynamic stability of simply supported, circular cylindrical shells subjected to dynamic axial
loads is analysed. Geometric nonlinearities due to finite-amplitude shell motion are considered by using the Donnell’s
nonlinear shallow-shell theory. The effect of structural damping is taken into account. A discretization method based on
a series expansion involving a relatively large number of linear modes, including axisymmetric and asymmetric modes,
and on the Galerkin procedure is developed. Axisymmetric modes are included; indeed, they are essential in simulating
the inward deflection of the mean oscillation with respect to the equilibrium position and in describing the axisymmetric
deflection due to axial loads. A finite length, simply supported shell is considered; the boundary conditions are satisfied,
including the contribution of external axial loads acting at the shell edges. The effect of a contained liquid is investi-
gated. The linear dynamic stability and nonlinear response are analysed by using continuation techniques and direct
simulations.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The fundamental investigation on the stability of circular cylindrical shells is due to Von Karman and
Tsien (1941), who analysed the static stability (buckling) and the postcritical behaviour of axially loaded
shells. In this study, the role of the sub-critical bifurcation of the equilibrium in the inaccuracy of the linear
theories was explained. It was explained that linear analyses are not able to predict the actual buckling
phenomenon observed in experiments; in particular, nonlinear analyses show that the bifurcation path is
strongly sub-critical, therefore, safe design information can be obtained with a nonlinear analysis only.
After this important contribution, many other studies have been published on static and dynamic stability
of shells. A short literature overview is provided in the following.
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Roth and Klosner (1964) analysed the buckling of circular shells subjected to a suddenly applied load,
using the Donnell’s nonlinear shallow-shell theory. They noted that the presence of initial geometric im-
perfections largely reduce the critical load. A similar problem was analysed by Tamura and Babcok (1975)
using the same theory; in this work it is shown that, in the case of step loading, the effect of in-plane inertia
can reduce the critical load.

Vijayaraghavan and Evan-Iwanowski (1967) analysed both analytically and experimentally the para-
metrical instabilities of a circular shell under seismic excitation. The cylinder position was vertical and the
base was axially excited by using a shaker. In this problem, the in-plane inertia is variable along the shell
axis and, when the base is harmonically excited, gives rise to a parametric excitation. Instability regions are
found analytically and compared to experimental results.

Koval (1974) used the Donnell’s nonlinear shallow-shell theory to study the effect of a longitudinal
resonance in the parametric transversal instability of a circular shell. He found that, combined parametric
resonances give rise to complex regions of parametric instability. However, this kind of phenomenon was
found at very high frequency and no damping was included in the analysis. Hsu (1974) used the Donnell’s
linear shallow-shell theory to analyse the parametric instability of a circular cylindrical shell: a uniform
pressure load and an axial dynamic load were considered, the former was added in order to eliminate the
Poisson’s effect in the in-plane stresses. The same problem was studied by Nagai and Yamaki (1978) using
the Donnell’s linear shallow-shell theory, considering different boundary conditions. In this work, the effect
of axisymmetric bending vibrations induced by the axial load and essentially due to the Poisson’s effect was
considered. The classical membrane approach for the in-plane stresses was found inaccurate when the
vibration amplitude of axisymmetric modes is not negligible.

Greenberg and Stavsky (1980) analysed the natural frequencies of orthotropic composite, axially
compressed, cylindrical shells using the Love’s shell theory.

Koval’chuk and Krasnopol’skaya (1980) considered the effect of geometric imperfection, using the
Donnell’s nonlinear shallow-shell theory and a simple three-mode expansion, which included driven and
companion mode, also referred as “‘conjugate form” (the symmetry of the shell gives rise to two asymmetric
modes having the same frequency and the same waveform, but shifted circumferentially of 1/4 wave length;
these two modes are named driven and companion modes or conjugated forms). Viscous material dissi-
pation was considered. In this work the fundamental role of initial geometric imperfections is analysed.

Croll and Batista (1981) established lower bounds for static buckling of very long and thin-walled,
axially loaded cylindrical shells, using the Donnell’s theory.

Bert and Birman (1988) studied the parametric instability of thick circular shells, developing a special
version of the Sanders—Koiter thin-shell theory for thick shells. A single mode analysis, giving rise to a
Mathieu type equation of motion, allowed to determine the instability regions.

Argento (1993) used the Donnell’s linear theory and the classical lamination theory to study the dynamic
stability of composite circular clamped—clamped shells under axial and torsional loading. The linear
equations of motion, obtained from discretization, are analysed by means of the harmonic balance method
and the linear instability regions were found. Argento and Scott (1993a,b) studied the dynamic stability of
layered anisotropic circular cylindrical shells.

Popov et al. (1998) analysed the parametric stability and the postcritical behaviour of an infinitely long
circular cylindrical shell, dropping the boundary conditions. A three-mode expansion was used, without the
inclusion of the companion mode. Membrane theory was used to evaluate the in-plane stresses due to the
axial load. The effect of internal resonances between asymmetric modes was analysed in detail.

Gongalves and Del Prado (2000, 2002) analysed the dynamic buckling of a perfect circular cylindrical
shell under axial static and dynamic loads. Donnell’s nonlinear shallow-shell theory was used and the
membrane theory was considered to evaluate the in-plane stresses. The partial differential operator was
discretized through the Galerkin technique, using a relatively large modal expansion. However, no com-
panion mode participation was considered and the boundary conditions were dropped by assuming an
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infinitely long shell. Escape from potential well was analysed in detail, and a correlation of this pheno-
menon with the parametric resonance was given.

Apart from the previously mentioned papers, which are strictly related to the object of the present paper,
other interesting studies on nonlinear vibrations of shells deserve to be commented. The inclusion of the
companion mode in the flexural displacement can be attributed to Evensen (1967) and Dowell and Ventres
(1968); the importance of these studies is also due to the inclusion of axisymmetric terms.

The literature regarding large-amplitude nonlinear vibrations of shells with fluid—structure interactions is
not wide; see e.g. the literature review on the nonlinear dynamics of shells in vacuo, filled with or sur-
rounded by quiescent and flowing fluids by Amabili and Paidoussis (2003). The effect of a contained still
heavy fluid is considered by Gongalves and Batista (1988) and by Amabili et al. (1998). The nonlinear
dynamics and stability of shells containing flowing fluid is analysed in Amabili et al. (1999a,b, 2000a,b). An
accurate convergence test can be found in Pellicano et al. (2002) where the dependence of the type of
nonlinearity on the shell geometry is analysed in detail. In Kubenko et al. (1982) an interesting review on
the subject can be found.

In the present paper, the dynamic stability and postcritical dynamics of a circular cylindrical shell
subjected to periodic and static axial loads is analysed. The Donnell’s nonlinear shallow-shell theory is used;
the effect of a contained fluid is considered and simply supported boundary conditions are satisfied. The
transversal flexural displacement is expanded using linear vibration modes. The expansion is suitably
truncated in order to ensure the convergence; asymmetric companion modes and axisymmetric modes are
included. The dynamics of axisymmetric modes is considered, avoiding the approximation of the membrane
theory for the in-plane stress evaluation. The dynamical system obtained through a Galerkin procedure is
analysed with numerical techniques. In particular, a software for the continuation and bifurcation of so-
lutions of ordinary differential equations is used (Doedel et al., 1998) for the analysis of static and periodic
solutions; direct simulations are performed for nonstationary responses. Time histories, spectra, phase
spaces and bifurcation diagrams of the Poincaré maps are shown for the most interesting cases.

2. Governing equations

In this study, a detailed analysis of the nonlinear dynamics of simply supported, complete circular cy-
lindrical shells of finite length L is made. In order to describe the geometry of the shell, a cylindrical co-
ordinate system (O; x, r, 0) is considered, where O is the origin placed at the centre of one end of the shell, x
is the axial and 7 is the radial coordinate. The displacement field of the middle surface of the shell is given by
the following components: u, v and w; in the axial, circumferential and radial directions, respectively. Initial
imperfections are not considered here, but the structural model developed by the authors of the present
paper has been successfully used in the case of imperfections. Therefore, the present analysis could be easily
extended to this important case.

The Donnell’s nonlinear shallow-shell theory is used. The equation of motion for finite-amplitude,
flexural vibrations of a thin, circular cylindrical shell is given by (Evensen, 1967; Amabili et al., 1998, 1999a)

DV*w + chiv + phiv = f + +1 62F+ o*F *w o*F  *w +62F o*w )
W pIW =T TP T R 52 T\ R2og? o~ Roxd0 Roxd0 | X R2OG?
with the compatibility equation
2 2 2 . 2
Lv4F:_167W+ M _al awz , (2)
Eh R ox2 R0x00 ox? R200

where D = ER*/[12(1 — v?)] is the flexural stiffness, E is Young’s modulus, v the Poisson ratio, / the shell
thickness, R the mean shell radius, p the mass density of the shell, ¢ the damping coefficient. The radial



3232 F. Pellicano, M. Amabili | International Journal of Solids and Structures 40 (2003) 3229-3251

deflection w is positive inward, w = (0w/0t) and w = (0°w/0¢?); F is the in-plane stress function. In Egs. (1)
and (2) the biharmonic operator is defined as V* = [02/x? + 0?/(R06%)]°, p is the pressure acting on the
shell surface due to the fluid—structure interaction and £ is a distributed external load that is not included in
the following (f = 0). By using Donnell’s nonlinear shallow-shell theory, the results are accurate only for
modes of high circumferential wave number n (n is the number of nodal diameters); specifically, 1/n*> < 1
must be satisfied, which implies the condition » > 5, in order to have fairly good accuracy. The in-plane
inertia is neglected. The forces per unit length in the axial and circumferential directions, as well as the shear
force, are given by (Evensen, 1967, Amabili et al., 1998, 1999a)
1 &’F ’F 1 o°F
Nx_ﬁW7 NO_@v NVO__EW' (3)

The force—displacement relations are
(]_V>Nx _V_W+l a_W 2+X
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The following simply supported boundary conditions are considered:
w=20
M, = —D{(Pw/dx?) + v[*w/(R200%)]} = 0 } atx =01, (7a)
Ny=N,(t) atx=0,L and v=0 atx=0,L. (7b)

Moreover, the condition that u, v and w are continuous in 0 is imposed. B

The axial load is periodic and presents a mean negative value (compressive load): N,.(f) =
—N + Np cos wt. The radial displacement w is expanded by using the linear shell eigenmodes as basis; in
particular, the flexural response may be written as follows:

NN
w(x, 0,1) Z Z m(mn) (1) €08(n1n0) + By () (1) sin(nn 0)] sin(4,,x)
ni=1 m=
+ ZAszl,o(f) sin(Aam-1x), (8)
m=1

where 4,, = mn/L, t is the time; 4,,;(¢), B, ;(t) and 4,,0(t) are unknown functions of ¢ and j = nn. In the
numerical calculations, N; and M will be assigned equal to 3 and 5, respectively. Expansion (8) is suggested
by the presence of quadratic and cubic nonlinearities. When a linear mode (1,7) is excited, the quadratic
nonlinearity gives coupling with modes having 2z circumferential waves, 2 longitudinal half-waves and with
axisymmetric modes, while the cubic nonlinearity gives coupling with modes having 3n circumferential
waves and 3 longitudinal half-waves. Further coupling with different asymmetric modes, which can arise
when internal resonances are present, are not considered here. For simplicity modes associated to gene-
ralized coordinates 4,, () and B,, ;(t) are referred as driven and companion modes, respectively, even if in
this case the asymmetric modes are not directly driven by external excitation.
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Some tests including axisymmetric modes with an even m in the expansion showed that they are never
excited. Mode expansion (8) may be considered the most complete expansion in absence of modal inter-
actions due to internal resonance and a nonsymmetric spatial excitation. Note that a particular care must
be given to the axisymmetric modes in order to describe correctly the outward axial-symmetric deflection
due to the compressive load before buckling. For the problem analysed in this paper, the series practically
converges with the ninth axisymmetric mode.

2.1. Particular solution of the stress function

Let us consider the most general form of the displacement expansion:

M N
w= Z Z(Amn cos n + an sin nQ) sin mn, (9)

m=1 n=0

where n = nx/L and N = nN,. Expansion (9) can be reduced to Eq. (8) by suitably eliminating extra terms.
Substituting the expansion of w, Eq. (9), into the right-hand side of Eq. (2), a partial differential equation
for the stress function F is obtained, the solution of which may be written as

F=F +F, (10)

where F, is the homogeneous and F; is the particular solution. The following general expression for the
particular solution can be found:

W oN
F = Z Z(anl sin mn sin n0 + F,,» sin my cos n0 + F,,; cos my sin n0 + F,,4 cos mi cos nl), (11)
m=0 n=0
where the coefficients F,,;, i = 1,...,4, have long expressions not reported.

The homogeneous solution is obtained in the next section by imposing the boundary conditions.
2.2. Boundary conditions

The boundary conditions given by Egs. (7a) are exactly respected by the expansion of the transversal
displacement field w; such expansion satisfies the continuity of circumferential displacement (Amabili et al.,
1998, 1999a). The homogeneous part of the stress function allows to satisfy on the average the in-plane
boundary conditions (7b):

2n

N,RdO = 2nRN, (1), (12a)
0
2npL
// NygdxRdO = 0. (12b)
0J0

In particular, Eq. (12a) imposes that the external load N, is equal to the in-plane axial stress N, averaged
circumferentially; Eq. (12b) can be satisfied when u and w are continuous in 6 on the average, and v = 0 on
the average at x = 0, L. The use of the averaged boundary conditions (12a, b) allows to evaluate an ana-
lytical approximation of the stress function. The use of this approximation is quite common in the literature
regarding nonlinear vibrations of shells (Dowell and Ventres, 1968; Amabili et al., 1999a,b, 2000a,b;
Kubenko et al., 1982).

It can be proven that, the displacement expansion of w and the solution of the stress function allows to
satisfy exactly the circumferential continuity of the displacement field v:
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The homogeneous solution of Eq. (2) may be assumed to be of the form (Amabili et al., 1999a,b,
2000a,b,c; Pellicano et al., 2000; Amabili and Pellicano, 2002)

F —1N1e202+1 NN —1//% Ch RdOdx RO (14)
h =M 2T 2L o)y o NugxR0,

where N,, Ny and N,y are the average in-plane restraint stresses generated at the ends of the shell, as a
consequence of the in-plane constraints on the average and the external axial load. Eq. (14) is chosen in
order to satisfy the boundary conditions on the average. Boundary conditions (12) allow to express the in-
plane restraint stresses Ny, Ny and N, in terms of w and its derivatives, see Eqgs. (4)—(6)

N, =N, (15)
2n aw 2
Ny =0. (17)
In particular, Ny is given by
~ Eh M A 0 TC Mo X
= ——<2 (=1 — 2(4% + B2 ) s 1
No va+2n2R{ n; (- 1) - 4R;;n - (18)

3. Fluid—structure interaction

The shell is assumed to be empty or completely fluid-filled. An incompressible inviscid fluid is considered
and the effect of the dynamic pressure acting on the shell surface is linearized (Gongalves and Batista, 1988;
Lakis and Laveau, 1991); the gravity effect is neglected. The fluid velocity field can be described in terms of
the velocity potential @, by means of the Laplace equation:

Fo o 100 100

2 T T L 1
Vv 6x2+6r2+r6r+r2602 0 (19)

The fluid velocity field is given by v = —V®. If no cavitation is present, one can write:
0P
— =w. 20
< ar >rR " ( )
Open ends are considered at the shell edges, i.e., zero pressure at both ends:
(@)oo= (P),_, =0 (21)
and the linearized Bernoulli equation give the fluid pressure:
Rl
= pp—. 22
P=prg, (22)

The solution of Eq. (19) and therefore the fluid pressure p can be easily obtained in terms of Bessel
functions and is not reported here for the sake of brevity (see Amabili et al., 1998, 1999a for details).
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4. Discretized equations

When the stress function and the fluid effect are evaluated, the classical Galerkin approach can be ap-
plied. The expansion of w given by Eq. (8), the stress function given by Eq. (10) and the fluid pressure p are
substituted into Eq. (1) and the result is projected on the basis (8).

The resulting discrete equations of motion are a set of 2nd order, nonlinear ordinary differential
equations linearly uncoupled:

(4,m,n)

Amn( ) + 2é/mnwmn mn( ) + CU Amn( ) + ”/mn(t)Am,,,( ) +g2A1mn +g2A2mn +g3Almn Jrg32 = Oa (23)

mn

Bmv"(t) + ZCmﬂwman”( ) + wmnAmVl( ) + ’YInn(t)B ( ) + nglm"’ + gZBZmH + g%Blmn + g332m " = 07 (24)

Ao (t) + 28000m0Am (1) + g Ao (£) + Vo () Amo(t) + gzmlo + gz}g0 + gx”io + g%O) + 7mo(t) =0,

(25)
where ng,m", ngl”’ " and g2, "% are quadratic functions of the asymmetric modal coordinates 4, ...,
Bl .- ngzm " ngzm " and ngz'"O are quadratic functions of all modal coordinates Ay ,, ..., Bi,,... and
Ao, .. ,gflm ", ggﬁ"’” and g;'1 ™9 are cubic functions of the asymmetric modal coordinates 4 dreeo Blayoo s
g,Azm n gfzm" and gAzmo are cubic functions of all modal coordinates 4, ..., Bi,,... and 4,,...

Eqgs. (23)—(25) are referred to asymmetric modes (conjugate modes 4,,, and B,.,) and axisymmetric
modes. The parametric excitation is given by the parameters y,,,, and 7,,,. In Eq. (24), the term 7,(¢) is a
direct excitation due to the axial load through the Poisson’s effect. Note that the direct excitation is present
only in the axisymmetric modal equations. When the system is excited, Egs. (22) and (23) can have trivial
solution; conversely, Eq. (24), which is directly forced, presents a nontrivial solution. Therefore, the fol-
lowing solution are admissible: 4,,, =0, B,,, =0, 4,0 # 0. The excitation of axisymmetric modal coor-
dinates furnishes a further parametric excitation on the asymmetric modal equations through the nonlinear
coupling.

5. Numerical results

A numerical analysis is performed on a test shell, studied in Popov et al. (1998) and Gongalves and Del
Prado (2000), having the following characteristics: 7 =2 x 102 m, R =0.2m,L =04 m, £ = 2.1 x 10'"' N/
m?, v = 0.3, p = 7850 kg/m?; in the case of fluid-filled shell, pr = 1000 kg/m*. In order to compare the
model developed in the present study with results present in literature, some tests are performed adopting
both the simple modal viscous damping and the Kelvin—Voight damping model used in Popov et al. (1998)
and Gongalves and Del Prado (2000), which gives, for example, { = 0.089 on mode (m = 1, n = 5); such
value of damping is quite high, however, it could be due, for example, to support dissipation. Experiments
available in literature indicate lower damping ratio for steel shells (see e.g. Amabili et al., 2002). Therefore,
the following damping ratios are also considered: { = 0.0008 for empty shell and { = 0.003 for fluid-filled
shell.

The fundamental frequency of the empty shell is equal to 2w x 503.7 rad/s and is obtained for m = 1 and
n = 5. The most interesting modes, for the present study, are listed in Table 1 (empty shell) and Table 2
(water-filled shell).
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Table 1

Linear natural frequencies for the empty shell (rad/s)
w5 = 3165.03 w35 = 127139 110 = 8043.12 w310 = 10655.9
w115 = 17803.5 w315 = 19485.1 w10 = 25861.7 w30 = 25919.3
wso = 26307.7 w79 = 27537.5 Wy = 30222.9

Table 2

Linear natural frequencies for the water-filled shell (rad/s)
W15 = 1704.36 w35 = 7446.14 w110 = 5350.42 310 = 7248.34
w15 = 13107.4 w315 = 14473.5 w1 = 6856.61 w30 = 12879.1
W50 = 15902.9 w70 = 18502 W9 = 21728

5.1. Static bifurcation analysis

A static compressive axial load is considered. It is well known that, when a circular cylindrical shell is
axially compressed, a catastrophic sub-critical bifurcation can occur (Von Kdarman and Tsien, 1941).

The classical critical load per unit length in the circumferential direction is given by (Yamaki, 1984)
N = ER*/(R+\/3(1 —?)), for the present case N, is obtained for m =1, n =5 and assumes the value
Ne = 2.54 x 10° N/m.

When the axial load reaches the critical load, the trivial equilibrium position loses stability, branch 1 of
Fig. 1, and the shell suddenly collapses into a deformed configuration. Indeed, the bifurcation branch,
which starts from the bifurcation point, is strongly sub-critical (branch 2 in Fig. 1), i.e., stable bifurcated
configurations exist before the critical load. In particular, four bifurcated configurations exist for each value
of the axial load when N/N, € [0.2,1]; two branches are stable (thick lines) and the others are unstable
(thin lines). A folding is present at N/N,, = 0.2, this is extremely important in practical applications; indeed,
the structure can collapse below the critical load, as underlined in Von Karman and Tsien (1941), when
perturbations are present. It is useful to clarify that the word “perturbations’ indicates all kind of per-
turbing factors: energy furnished through impacts, transversal or axial periodic excitations, geometric
imperfections. The present results have been obtained with the continuation software AUTO by means of a

15} '
1o}
<
-
1]
ﬂ)_
3
X
T 0
5
10 , , , , ,
0 02 0.4 0.6 0.8 1
NN,

Fig. 1. Static bifurcation (empty shell): (—) stable solution, (—) unstable solution, (- - -) Gongalves and Del Prado (2000). Prebuckling,
Ist branch; postbuckling, 2nd branch.
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17 dof model including 5 axisymmetric modes. The present solution is compared with that obtained in
Gongalves and Del Prado (2000) (dotted line), showing a good agreement in the bifurcation path. Note that
the present model predicts bifurcation when the axial load is 95% of the classical load N; it is well known
that the classical critical load overestimates the actual critical load, because it refers to infinitely long shells.
In the case of finite long shells the well known “prebuckling effect”” (Yamaki, 1984) reduces the critical load.

It is worthwhile to stress that the present results have been obtained by respecting the simply supported
boundary conditions for a finite length shell; conversely, in Gongalves and Del Prado (2000) an infinitely
long shell is considered; this can explain the differences in the results.

Moreover, it is interesting to note that, when the shell is compressed, the Poisson’s effect induces an
expansion of the surface, see the first branch of the unbuckled structure (w is positive inward); this effect is
due to the axisymmetric modes, which are directly forced by the static axial load through the Poisson’s
effect. The axisymmetric contribution causes also the asymmetry of inward and outward branches; Fig. 1
shows that the shell is weaker inward (larger deformation of the positive part of branch 2).

5.2. Dynamic bifurcation analysis

When the shell is excited by an axial periodic load, two kind of excitations are present on the modal
equations: (i) a direct excitation of the axisymmetric modes due to the Poisson’s effect; (ii) a parametric
excitation of all modes. However, the direct excitation of axisymmetric modes induces a further parametric
excitation on the asymmetric modes due to the nonlinear coupling with axisymmetric modes.

In many studies the in-plane stresses are evaluated by means of the membrane theory, i.e., the axi-
symmetric response is evaluated from a static analysis. This approach can give inaccurate results when the
axisymmetric modes undergoes to a resonance and both the amplitude and the phase of oscillation change
(Nagai and Yamaki, 1978).

In order to compare the present model to Popov et al. (1998), the following conditions are considered:
static load N = 0, Kelvin—Voight damping (damping ratio equal to 0.089 on the fundamental mode) and
excitation frequency w/w;s = 1.9.

The numerical analysis is performed by means of continuation techniques (Doedel et al., 1998); such
methods are not able to follow bifurcation surfaces, which arise in the presence of symmetric problems.
Circular cylindrical shells under axial loads represent the typical problem where the geometric symmetry
causes bifurcation surfaces; indeed, when the dynamic load reaches the critical amplitude, both modes
having the “‘same shape” (represented circumferentially by sine and cosine functions) and frequency can
bifurcate, giving rise to a bifurcation surface in the amplitudes-parameter space. Geometric imperfections
are always present in actual shells; in particular, asymmetric imperfections split the natural frequencies of
the two modes with the same number of circumferential waves. In the present model, geometric imper-
fections are not directly introduced, they are taken into account in a simplified way by introducing a 1% of
difference in the natural frequencies of driven and companion modes. This frequency splitting allows to
consider small geometric imperfections and to use continuation techniques.

When w/w; s = 1.9, the frequency of excitation is close to the principal parametric resonance of the
fundamental mode. In Fig. 2(a)—(c) the maximum amplitudes of periodic oscillation are represented for
modes 4,5, Bi5 and A versus Np/N; even if in the calculation a larger set of modes is used, just few
modes are shown, for the sake of brevity. Increasing the dynamic excitation level Np, a period doubling
bifurcation, due to a parametric instability, is found for Np/N,, = 0.46, see Fig. 2. Before the bifurcation
the shell vibrates with the same frequency of excitation (17 oscillation), and the dynamics is due to
the axisymmetric modes only, see the figure included in Fig. 2(c) showing the shell deformation. After the
period doubling bifurcation a sub-critical branch 2 can be observed. Branch 2 is initially unstable up to the
folding, Np /N, = 0.409; this branch loses stability and bifurcates at Np /N, = 0.49, where the conjugate
mode B 5 is excited and a travelling-wave response can appear. In Fig. 2(a) the asymmetric deformation of
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Fig. 2. Dynamic instability (empty shell): static load N/N, =0, { = 0.089. w/w, 5 = 1.9. (—) stable solution, (—) unstable solution;
‘PD’ period doubling.

the shell is shown. When Np > 0.49 no periodic solutions are found; this region must be investigated
through a direct numerical integration, which allows to investigate nonstationary dynamics. For the same
problem, in Popov et al. (1998) the parametric instability has been found at Np /N, = 0.39. In order to
explain this discrepancy the present model has been modified. The membrane theory has been used to
evaluate the in-plane stresses. The analytical details are not reported here for the sake of brevity. However,
an explanation of the effects could be useful. Using the membrane theory, the axisymmetric contribution is
not included directly in the dynamics of the axisymmetric modes, i.e. these modes are not directly excited.
The dynamic critical load, with this simplified approach, is Np /N, = 0.398; the small difference with Popov
et al. (1998) can be easily explained: even if the same simplification is followed for the evaluation of the in-
plane stresses, here simply supported boundary conditions are respected; conversely, in Popov et al. (1998)
infinitely long shells are considered; moreover, a larger set of modes is used in the present study.

In order to quantify the effect of a contained fluid and the damping, the dynamic critical loads are
computed for different excitation frequencies, damping ratios and considering empty and water-filled shells;
the results are reported in Table 3. It is of interest that the presence of a contained fluid enlarges the critical
load; this safety effect is due only to the inertial effect of fluid. Indeed, in these simulations the damping
ratio has been considered equal to 0.089 for all modes, except for the following cases: { = 0.016 and the
Kelvin—Voight model with {; s = 0.089. The inertial fluid effect reduces the natural frequencies: in some
conditions axisymmetric modes vibrate with larger amplitude and change the critical dynamic load. It must
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Table 3

Critical dynamic load: the damping ratio is constant on all modes if not specified
Np /N /s { Presence of fluid
0.448 1.9 0.089 No
0.86 1.9 0.089 Yes
0.416 2 0.089 No
0.722 2 0.089 Yes
0.492 2.1 0.089 No
0.724 2.1 0.089 Yes
0.24 1.9 0.016 No
0.46 1.9 {15 =0.089* No

#Kelvin-Voight damping model, Popov et al. (1998), Gongalves and Del Prado (2000).

be pointed out that, using the membrane theory, the inertial effect cannot be included in the axisymmetric
vibration. Therefore, in presence of fluid the membrane theory can give highly inaccurate results. From
Table 3 one can observe that using a simple constant modal damping, the result do not change greatly with
respect the Kelvin—Voight damping model. Moreover, it must be noted the strong influence of the damping
ratio on the dynamic critical load: for { = 0.016 the dynamic critical load is almost 50% smaller than the
case { = 0.089; this is a well known feature of the parametric resonance (Nayfeh and Mook, 1979), and can
explain the importance of a correct estimate of the damping ratio in analysing parametric resonances.
The contribution of the axisymmetric modes, for the water-filled shell, in the present case is magnified by
the vicinity of the resonance of the first axisymmetric mode. Indeed, in presence of water w; /w5 = 4, see
Table 2; therefore, when w/w; s = 1.9, case of Fig. 2, the resonance of the first axisymmetric mode is not
far. In order to quantify this contribution, a simulation is performed by varying the excitation frequency. In
Fig. 3 the maximum amplitude of the first axisymmetric mode is plotted versus the excitation frequency.
For w/w; 5 =2 1.96 an instability takes place, due to the parametric resonance of the fundamental mode; the
response regains stability at o/, s = 2.14; then the solution loses stability definitively at w/w; s = 2.62.
When o/w; s € (1.96,2.14), i.e. in the principal instability region, the axisymmetric mode amplitude is 30%
higher then the static response at w/w; 5 = 0. Therefore, if the axisymmetric dynamics are neglected, in this
case, an important part of the shell vibration is lost. It must be stressed that, the axisymmetric vibration
causes a parametric excitation of asymmetric modes, because of the nonlinear coupling. Therefore, an

061

1,0/

04r

0 1 1 1
0 1 2 3 4 5 6

wlo 15

Fig. 3. Axisymmetric amplitude of oscillation (water-filled shell): N/Ng =0, Np/Ng =0.75, {=0.089. (—) stable solution,
(—) unstable solution.
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inaccurate evaluation of this contribution leads to inaccurate findings on the parametric resonance de-
tection.

In order to analyse the dynamic behaviour of the structure, without fluid, but in presence of a static
component of the axial load, the following case is analysed: N/N. = 0.8, { = 0.089 and w/w s0) = 0.7;
where w; 5 is the frequency of the fundamental mode in the case of N = 0. Indeed, the linear natural
frequencies decreases as the static compressive load N increases. In this case, the actual free oscillation
frequency is one half the excitation frequency and a parametric resonance can be met. In Fig. 4(a) and (b)
the maximum amplitude of modes 4,5 and A4, are represented. Large instability regions are found for
Np/N.: € (0.142,0.355) and Np/N. > 0.392; after Np/N, = 0.392 no periodic or trivial solutions are
generally stable, except for extremely small regions. Furthermore, period doublings are observed for
Np /N € (0.47,0.4703). Note that in Gongalves and Del Prado (2000) the first instability is found at
Np/N.: =~ 0.15, i.e. very close to the present results; but the postcritical scenario was completely different.

It is now interesting to investigate the results obtained with the membrane theory. The first main dif-
ference with the previous results is that axisymmetric modes are not directly excited, before the bifurcation
all modes have trivial amplitude, Fig. 5(a) and (b). The critical load is found at Np /N, = 0.2235, where a 2T
sub-harmonic bifurcation (branch 2) appears. A folding is present in branch 2 at Np /N, = 0.1355; the 1/2
sub-harmonic solution loses stability at Np/N. = 0.156, where a bifurcation branch 3, including the

25 @ T T T T 02 ) T T ./4

Ai1o/h

05

Q 0.1 0.2 03 04 05

N/N,,

Fig. 4. Dynamic bifurcation (empty shell): static load N/N,, = 0.8. (—) stable solution, (—) unstable solution.
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Fig. 5. Dynamic bifurcation (empty shell): membrane theory for in-plane stresses, static load N/N; = 0.8. (—) stable solution,
(—) unstable solution; ‘BP’ bifurcation point, ‘PD’ period doubling.
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companion mode, appears. Branch 3 loses stability at Np /N, = 0.161 through a further period doubling
bifurcation, which has not been followed. The difference with Gongalves and Del Prado (2000) is now
increased, and is probably due to the boundary conditions and the larger mode expansion used in the
present study.

This analysis show that the postcritical scenario strongly depends on the approximations made in solving
the governing equations: membrane theory, truncation of the series expansion and approximation of
boundary conditions; furthermore, probably the shell theory used in the analysis could play an important
role. Therefore, in the clarification of the complete postbifurcation scenario, both further theoretical re-
finements and laboratory experiments should be useful.

The damping model used in Popov et al. (1998) and Gongalves and Del Prado (2000) seems to be not
realistic. Indeed, experiments show that: (i) the damping ratio presents a different distribution over the
modes with respect to the Kelvin—Voight model; (ii) the damping coefficient is usually smaller than 0.089,
i.e., is of order of 1074, for empty shells, and 103, for water-filled, stainless steel suspended shells having
small dissipation at the edges (Amabili et al., 2002).

Some calculations are now made by assuming smaller value of the damping ratio; specifically, { = 0.0008
for empty shell and { = 0.003 for water-filled shell.

In Fig. 6(a)—~(c) the maximum amplitude of oscillation of modes 4,5, B;s and 4, versus Np/N is
presented for an empty shell subjected to a periodic axial load having zero mean value (N = 0), { = 0.0008
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Fig. 6. Dynamic bifurcation: static load N/N,; = 0, { = 0.0008 (empty shell); (—) stable solution, (—) unstable solution; ‘PD’ period
doubling.
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on all modes and w/w; s = 2. The scenario is changed with respect to the more damped cases, previously
studied in Fig. 2. No sub-critical behaviour is present; however, the instability is reached for a smaller value
of the excitation amplitude: Np /N, = 0.003; for this excitation level a period doubling bifurcation takes
place and originates the response represented by branch 2. The period 27 solution is stable up to
Np /N = 0.0191, where the companion mode is excited through a bifurcation (branch 3); after this load no
stable solutions are found.

The response of the empty shell is now analysed by varying the excitation frequency; the following
parameters are considered: static load N/N,, = 0; Np/N,, = 0.01; { = 0.0008. In Fig. 7 a strong softening
behaviour is observed (sub-critical bifurcation); when w/w; s = 2 the periodic response, which affects the
axisymmetric modes only, undergoes to a period doubling bifurcation and gives rise to a period doubling
solution. In the narrow region w/w;s € (1.774,1.776) the sub-harmonic response presents a further
bifurcation, which gives rise to the excitation of the companion mode B;s, see Fig. 7(b) and the pic-
ture included in Fig. 7(a); the axisymmetric mode generally follows the behaviour of asymmetric modes,
Fig. 7(c).
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Fig. 7. Dynamic bifurcation (empty shell): dynamic load Np/N, = 0.01, static load N/N, =0, { =0.0008. (—) stable solution,
(—) unstable solution; ‘PD’ period doubling.
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Np/Ng = 0.01. Damping ratio { = 0.0008; (—) stable solution, (—) unstable solution; ‘PD’ period doubling.

Increasing the static load N the scenario is changed; the case N/N,; = 0.1, Np /N, = 0.01, is represented
in Fig. 8(a) and (b), and N/N, = 0.3, Np/N,, = 0.01 in Fig. 8(c) and (d); the damping ratio is { = 0.0008.
The case Np /N, = 0.01, static load N/N,, = 0.6, { = 0.0008 is shown in Fig. 8(¢) and (f). In the latter case,
the trivial solution loses stability in the intervals: w/w, 50y € (1.215,1.231) and (1.232, 1.247). Mode 4, 5



3244 F. Pellicano, M. Amabili | International Journal of Solids and Structures 40 (2003) 3229-3251

bifurcates at w/w; 50y = 1.215 (unstable branch) and ®/w; s = 1.231 (stable branch); conversely mode
B 5 bifurcates at w/w sy = 1.232 (unstable branch) and w/w; 5oy = 1.247 (stable branch). Modes 4, s and
B, 5 are never excited together, therefore, no travelling-wave motion appears. The bifurcation branch of 4; s
is interesting; the following phenomena are present: folding at w/w sy = 1.14 and 1.157; a region of al-
ternate stable and unstable solutions bounded by torus bifurcations w/w sy € (0.974,1.074). Bifurcation
solutions are present up to the frequency ratio /w5 = 0.94.

It is of interest to investigate the locus of the principal parametric instability by performing a two pa-
rameter continuation; the following parameters are considered in the continuation: w/w; s and Np/N. The
static load N /N, is assumed equal to zero and the damping ratio is { = 0.0008, empty shell. In Fig. 9 the
locus of period doubling looks quite interesting; the classical picture is found close to w/w; s = 2. However,
many spikes are found for high values of Np/N, and w/ws > 2, which are probably due to the modal
interactions.

The results reported in Fig. 6 show that no stable solutions are found for Np /N, > 0.0191. In order to
investigate the behaviour of the empty shell in this region a direct simulation is performed assuming: static
load N /N = 0, dynamic load Np /N, = 0.02, damping ratio { = 0.0008, excitation frequency w/w;s = 2; a
1% perturbation on the companion mode frequency is introduced in order to reproduce the same condi-
tions of previous AUTO computations. An initial condition different from zero on 4, s is given. In Fig. 10 it
can be seen that, after a very long time integration, 4, s reaches zero and the companion mode B, 5 presents
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Fig. 9. Locus of period doubling: static load N/N,, =0, { = 0.0008 (empty shell).

(a)

By sh
o

08 o8
25 1 030 2302 2304 2306 2308 24

4 . 4
tois x10 tos %10 toLs «10*

Fig. 10. Direct simulation (empty shell): static load N /N, = 0, Np /N = 0.02; { = 0.0008, /w5 = 2. (a) Ay 5, (b) By 5, (¢) (—) 415 and
(—=—) B, 5. Perturbation on the companion mode frequency 1%.
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a large amplitude of oscillation. This simulation shows that, for Np /N, > 0.0191, stable periodic oscilla-
tions exist, but the role of 4,5 and B, 5 is exchanged.

In Fig. 11 the response of a water-filled shell is shown: the critical dynamic load is met at Np /N, = 0.296
when { = 0.003 on all modes and w/w; 5 = 2; the bifurcation is initially slightly sub-critical and unstable,
indeed, a saddle node bifurcation (folding in Fig. 11(a)) is present at Np /N, = 0.28. After this point the
response becomes stable, and looses again stability at Np /N, = 0.67, where the conjugate mode can be
activated through a bifurcation (this branch has not been followed).

Periodic and nonstationary responses are now analyzed in detail by means of direct simulations and
bifurcation diagram of Poincaré maps. The case of an empty shell is shown in Fig. 12; the following pa-
rameters are considered: N/N = 0.6, Np/N, = 0.01; { = 0.0008. The diagram is obtained by decreasing
the excitation frequency. A 1% perturbation of the natural frequency of the companion mode is used. At
/w50y = 1.251 the parametric instability of the companion mode B s is met; indeed, because of the small
perturbation, the natural frequency of the companion mode is 1% higher than the natural frequency of
mode 4; 5. At w/w) 50) = 1.207 the mode 4, s is excited and, for w/w) 50y = 1.157, mode B, 5 collapses to the
trivial solution. In the region w/w 50y € (0.996,1.077) alternate periodic and quasi-periodic orbits can be
found. At w/w; 50y = 0.975 a sudden jump to a chaotic orbit is found. At w/w, 50y = 0.929 a jump to an
orbit around the bifurcated static position takes place; the amplitude of oscillation is quite large (not
shown), i.e. the shell collapses.

The periodic oscillations of the water-filled shell are now analysed. The following parameters are con-
sidered: N/Ng = 0.6, Np/N.: = 0.02; { = 0.003; where the bifurcation parameter is w/wisq). A 1% per-
turbation is introduced, as previously done; the software AUTO is used. In Fig. 13(a) and (b) the amplitude
of oscillation versus the excitation frequency, normalized with respect to the linear frequency w; 5 of the
unloaded shell, is shown. Starting the simulation with a low frequency excitation o/ sy = 0.6, the shell
vibrates with the same frequency of the excitation (17 oscillation). In particular, the asymmetric modes do
not vibrate and the shell oscillation is completely axial-symmetric. The axisymmetric modes vibrate, but
their amplitude is not shown for the sake of brevity. When w/w; 50y = 1.213 the 1T oscillation loses sta-
bility and a period doubling bifurcation gives rise to branch 2, which represents the amplitude of a sub-
harmonic (27) response; the companion mode is not excited; this branch is completely unstable. Increasing
the excitation frequency a second bifurcation is met at w/w; 5o = 1.23, branch 4 (Fig. 13(b)); in this
case the mode B, 5 bifurcates; the frequency of mode B s is larger than mode A4, s because of the linear
perturbation. Branch 4 shows a completely unstable bifurcation path. When w/w; 5o = 1.234 a third
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Fig. 11. Dynamic bifurcation: static load N/N. =0, {=0.003 (water-filled shell); (—) stable solution, (—) unstable solution;
‘PD’ period doubling.
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bifurcation takes place, involving mode 4,5 (branch 3). The response is initially unstable and regains
stability at @/m;s0) = 1.23. Moreover, branch 3 presents a sequence of stable and unstable regions for
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/w50y € (0.672,0.876), bounded by torus bifurcation points. A fourth bifurcation is met at w/w; s =
1.249, branch 5, involving mode B, 5. Such solution is initially stable but loses stability at w/w, 5oy = 1.215,
i.e., close to the first bifurcation of mode 4, s. It is to note that the bifurcation paths are strongly sub-critical
and the sub-harmonic response exist for a large range of the excitation frequency.

In order to investigate more deeply the numerical results obtained with the continuation technique,
direct simulations are performed. In particular, the bifurcation diagram of Poincaré maps for the water-
filled shell is shown in Fig. 14; the following parameters are considered: N/Ng, = 0.6, Np/N, = 0.02;
{ =0.003. The diagram is obtained by decreasing the excitation frequency; indeed, the analysis of periodic
solutions suggests the presence of a sub-critical bifurcation. A 1% perturbation is introduced, as in the
previous computations, in order to reproduce the conditions of the simulations presented in Fig. 13. At
w/w; s0) = 1.252 the parametric instability of the companion mode is met; because of the small pertur-
bation, the natural frequency of the companion mode B 5 is 1% higher than the natural frequency of mode
Ays. At o/ws50) =1.217 the orbit loses stability and the mode A4;s is excited. In the region
/w50y € (0.83,0.88) a quasi-periodic motion is found. A similar scenario is found close to
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/w50y = 0.74; here a quasi-periodic orbit takes place, but it loses immediately stability and the system
jump to a period-one orbit around the bifurcated static solution; the amplitude of oscillation is quite large,
i.e. the structure is collapsed.

In order to investigate the shell motion in the narrow region where the quasi-periodic motion is found in
the bifurcation diagram, direct simulations are performed for the water-filled shell using the following
parameters: N /Ng = 0.6, Np /N, = 0.02; w/w, 500y = 0.8355; { = 0.003. In Fig. 15(a) the projection of the
phase space on the plane (A1>5,A|‘5) shows that the trajectory is not closed and fill a part of the phase space.
The spectrum, Fig. 15(b), shows a main 1/2 sub-harmonic component and a general splitting of harmonics,
which is due to the modulation of amplitude. Note that in abscissa of Fig. 15(b), @ indicates the spectral
line frequency and wexgitation Indicates the excitation frequency (the notation has been changed with respect
to previous analyses).

Finally, in order to clarify the effect of linear perturbation introduced in the previously mentioned an-
alyses, a perfect shell without linear perturbation is studied through direct simulations. Fig. 16(a) and (b)
show that the behaviour is not very different from the perturbed case, shown in Fig. 14. However, now the
linear frequency of modes 4,5 and B, s is the same, therefore both modes are symmetrically excited. The
same problem is analysed in Fig. 17(a) and (b) for a smaller damping ratio: { = 0.001; this simulation is
performed to show the effect of a damping ratio reduction. It can be observed that the scenario is slightly
changed; amplitude modulations appear in a larger range, but the overall behaviour is almost unchanged.
In order to complete the analysis within Fig. 17(a) phase spaces and spectrum of A5 are shown for
/o1 50) = 0.8606 and in Fig. 17(c) the time histories of 4, 5 and B, 5 are given. In particular it can be noted
that the time histories of 4; s and B, s have a phase difference 0 ~ m, which means that no pure travelling
waves appear (see e.g. Amabili et al., 1999a, for the travelling-wave analysis).

6. Conclusions

The parametric instability and the postcritical behaviour of a circular cylindrical shell subjected to
dynamic axial loads is analysed. The Donnell’s nonlinear shallow-shell theory has been used, and partial
differential equations have been discretized by means of the Galerkin procedure, using a relatively large set
of modes in the expansion. The static buckling of a simply supported shell has been analysed and the results
have been compared with the one present in the literature. Then, the combined effect of a static axial
preload and dynamic loading is considered, in order to investigate the stability bounds and postcritical
behaviour. Dynamic stability bounds for empty shells are compared with the results present in literature.
The presence of a liquid gives rise to an increment of the linear damping and an added mass effect, which
reduces the linear natural frequencies of vibration. The contained liquid causes interesting variations in the
dynamic stability bounds. If the shell ends are open, the static stability and the static postcritical path are
not influenced from the fluid-mass effect; indeed, it can be shown that the fluid contribution affects the
inertial properties only. The role of axisymmetric dynamics has been investigated, showing the limitations
of the membrane stress assumptions when the frequency of the periodic axial load approaches the fre-
quency of axisymmetic modes. The role of the parametric resonance in the structural collapse has been
confirmed both for empty and liquid filled shells.
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